
MCR-86-2601

NAS8.36108 Aerocapture for Manned

Volume X Mar .sMissi°n__er Vehicle
Orbital Trans .. " j
Concept Definit|on anu
System Analys=s Study

1987

l_ASA-CR-t83550) O_I_.I_AL _l_f_ VEBICLE N_9-13q50
IIC_CEF1_ D_FI_TIC_ AR_ 5YS_ AbAL¥SIS
_UDY. VOLUME 1C: JE_CEAP_UB_ }C_ _ANNED

_A_i5 _I_CIC_5 (l_aLti_ l_a_£etta _erospace) gnclas
"-_ p CSCL 221_ G3/16 013q6E3



NAS8-36108

ORBITAL TRANSFER VEHICLE

CONCEPT DEFINITION AND SYSTEM ANALYSIS STUDY

VOLUME X

AEROCAPTURE FOR MANNED MARS MISSIONS

January1987
Revl-Jan 1988

Wo H. Willcockson

OTV Program Manager

Approved By: ./_ ft. _7__AX.4,_

Glen J. D_ckman

Advanced Upper Stages

MARTIN MARIE'B'A

ASTRONAUTICS GROUP
P.O. BOX 179

DENVER, COLORADO 80201



This final report, Volume X - Aerocapture for Manned Mars Missions, was prepared
by Martin Marietta Astronautics Group for NASA/MSFC in accordance with contract
NAS8-36108. The study extension was conducted under the direction of NASA OTV
Study Manager, Mr. Donald R. Saxton, during the period from June 1986 to January
1987.

The following personnel were key contributors during this study extension:

Study Manager: W. H. WiUcockson

Denver Engineering Support:
Aerothermal

Flight Analysis Support

G. W. Heckel
C. M. Reed

Michoud Engineering Support:
Engineering Manager
Structural Analysis

W. P. Haese
R. B. Newton

This report supplements the OTV Phase A Study program results which were presented
in Volumes I through IX.

,Volume Content_

Volume I
Volume IA
Volume 1"[

Volume IT[
Volume IV
Volume V
Volume VI
Volume VII
Volume VIII
Volume IX
Volume X

Executive Summary
Executive Summary Supplement
OTV Concept Definition and Evaluation
Book 1 Mission and System Requirements
Book 2 OTV Concept Definition
Book 3 Subsystem Trade Studies
Book 4 Operations
System and Program Trades
Space Station Accommodations

Work Breakdown Structure and Dictionary
Cost Estimates

Integrated Technology Development Plan
Environmental Analyses
Study Extension I Results
Aerocapture for Manned Mars Missions



TABLE OF CONTENTS

VOLUME X - AEROCAPTURE FOR MANNED MARS MISSIONS

List of Tables and Figures ..................................

Acronyms ............ . ............. , ...... , ..................

ii

iii

1.0 INTRODUCTION ................................................ 1

2.0 VEHICLE BASELINE DESCRIPTION ................................

3.0 ENVIRONMENTAL DATA ..........................................

4.0 MISSION PROFILES ............................................

4. i Mars Capture. ..

4.3 Earth Capture ..........................................

5.0 ENTRY PARAMETRICS ...........................................

5.1 Mars Capture Parametrics ...............................

5.2 Mars Landing Parametrlcs ...............................

5.3 Earth Capture Parametrics ..............................

6.0 ERROR ANALYSIS .............................................. 9

6.1 Interplanetary Navigation .............................. i0

6.2 Mars Capture Error Analysis ............................ ii

6.3 Mars Landing Error Analysis ............................ 12

6.4 Earth Capture Error Analysis ........................... 13

7.0 AEROBRAKE MATERIALS AND STRUCTURAL ANALYSIS ................. 14

7.1 Mars and Earth Capture Brake ........................... 14

7.2 Mars Landing Aerobrake ................................. 16

8.0 CONCLUSIONS ................................................. 17

9.0 REFERENCES ....................................................... 18



Table No.

6.2-1

6.3-1

6.4-1

7 .i-i

Figure No.

2.0-1

4.0-i

5 .i-I

5.1-2

5.2-1

5.2-2

5.2-3

5.3-1

5.3-2

6.0-i

LIST OF TABLES AND FIGURES

Title

Baseline Mars Vehicle Configuration .......

Baseline Vehicle Weights ..................

Planetary Data ............................

Planetary Aerocapture .....................

Mars Capture - L/D Parametrics ............

Mars Capture - Heating Parametrics ........

Mars Landing Overview .....................

Mars Landing - L/D Parametrics ............

Mars Landing - Heating Parametrics ........

Earth Capture - L/D Parametrics ...........

Earth Capture - Heating Parametrics .......

Aerodynamic Control Corridor ..............

Mars Capture Error Analysis ...............

Mars Landing Error Analysis ...............

Earth Capture Error Analysis ..............

Mars / Earth Capture Brake Overview .......

Aerobrake Data ............................

Aerobraked Vehicle Configuration ..........

1

2

2

3

6

6

7

8

8

9

9

i0

Ii

12

13

15

16

17

li



ACRONYMS

ANARS

AU

FSI

GPS

L/D

MEM

0TV

RSI

VLBI

Autonomous Navigation and Attitude Reference System
Astronomical Unit

Flexible Surface Insulation

Global Positioning System

Lift/Drag
Mars Excursion Module

Orbital Transfer Vehicle

Rigid Surface Insulation

Very Long Base Interferometry

iii



1.0 Introduction

A manned expedition to Mars has been under consideration as a potential

mission for the early 21st century (Ref. i). The necessarily large vehicle

requirements have sparked interest in aerocapture as a means of reducing

propellant usage. This volume summarizes the work performed to establish

concepts and feasibility of such a mission which makes maximum use of

aeroassist maneuvers.

2.0 Vehicle Baseline Description

The baseline vehicle for this study is shown in Figure 2.0-1 which is

taken from Reference i. The spacecraft can accommodate 6 people on a 2 year

round trip voyage to Mars. It consists of three major sections: A Mars

excursion module (MEM), a Laboratory and Habitation (Lab/Hab) module, and a

Mars escape stage. The Mars excursion module is used to land on the planet

_i HAil AREA I ' I ! I

(MEMI

Figure 2.0-1 - Baseline Mars Vehicle Configuration

and perform surface investigations. The lower section serves as a launch

platform for the MEM stage 2 which returns the crew and expedition samples to

Martian orbit. The Lab/Hab module, which contains the living quarters and

experiment laboratories, acts as a base vehicle in Mars park orbit while the

MEM is on the surface. The Mars escape stage provides the impulse for

departure from Martian orbit as well as any other correction maneuvers In the

mission. The basellne weights for these modules Is summarized In Table 2.0-1.

1



Table 2.0-1 - Baseline Vehicle Weights

MARS EXCURSION MOOULE

LAB / HAB MODULES

MARS ESCAPE STAGE

DRY WEIGHT (LB) WET WEIGHT (LB)

74532

100903

15547

157527

133676

174056

3.0 Environmental Data

Mars and Earth planetary data are summarized in Table 3.0-1. The Mars

base atmosphere is the Northern summer nominal as contained in the Mars

Reference Atmosphere by A. Kllore, et al (Reference 2). Earth Nominal

atmosphere is the 1962 standard.

Table 3.0-1 - Planetary Data

EQUATORLN. RADIUS

POLAR RADIUS

SPIN RATE

GRAVWY CONSTANT (MU)

GRAVITY: J2 TERM

GRAVITY: J3 TERM

GRAVITY: J4 TERM

ATMOSPHERE (NOMINAL)

EARTH MARS

2.09256627E7 FT

_08555024E7 FT

7.292115146E-5 RAD/SEC

1.407645794E16 FT3/SEC2

0.0010826

-0.000002565

-0.000001608

1962STANDARD

1.114567E7 FT

1.107448E7 FT

7.0882181E-5 RADIAN/SEC

1.512468E15 FT3/SEC2

0.001965

0

0

NORTH SUMMER NOMINAL

(MARS REFERENCE ATMOS.)



4.0 Mission Profiles

The round-trip manned Mars mission has three major aerobraking phases.
Upon arrival at Mars from the Earth an aeromaneuver xs performed in the

Martian atmosphere which reduces velocity to within elliptical orbit speeds.

This is the Mars capture phase. Once the Mars vehicle has achieved a stable

orbit about the planet, the MEM landing craft is deployed. Aerobraking is

utilized to provide the majority of velocity reduction required to reach the

surface of the planet. This is the Mars landing phase. After completing its

surface mission, the Mars lander is propulsively boosted back into Martian

orbit where it rejoins the Lab/Hab modules. After a period of on-orbit

checkout and Mars/Earth phasing, the resulting stack is propulsively boosted

into a trans-Earth trajectory. Upon arrival at Earth, another aerocapture

maneuver is used to brake the vehicle into an elliptical Earth parking orbit.

This last maneuver is the Earth capture phase.

An overview of the aerocapture process is shown in Figure 4.0-1.

Beginning with a hyperbolic encounter trajectory the vehicle makes a grazing

pass through the planet's atmosphere near orbital perigee. The amount of drag

produced in this entry is controlled to yield a precise velocity reduction

consistent with the targeted capture orbit at atmospheric exit. This capture

orbit is highly eccentric to achieve synchronism with the planet. The perigee

of this orbit is subsequently raised out of the atmosphere via a burn at the

first pass through apogee. This results in a stable park orbit which is

relatively free of further drag effects.

CAPTUIIE ORBIT

Figure 4.0-1 - Planetary Aerocapture



4.1 Mars Capture

The Mars vehicle encounters the planet on a hyperbolic (escape)

trajectory and must be slowed to within planetary capture velocity. The

completion of this phase results in the vehicle achieving a closed eccentric

orbit about the planet. The Mars encounter hyperbolic selected for this study

has a characteristic C 3 of 31 km2/sec 2 representing an opposition class

mission. The post-aerocapture orbit is Mars-synchronous with an apogee of

18108 nmi. and a period of 24.6 hr.

During the final days of pre-encounter a closed loop astronavigation

process continuously refines the Mars encounter orbit. This process will

probably use an autonomous device, such as the ANARS (Autonomous Navigation

and Attitude Reference System) space sextant, to minimize vehicle/crew

impacts. The results of this navigation refinement process will be utilized

in a discrete number of terminal correction burns to increase the precision of

the Mars entry state. The final trajectory correction is conducted at entry

minus one hour. OTV experience has shown that a final correction burn at this

time is operationally feasible and results in great benefits to aeroassist

efficiency by reducing L/D requirements. The actual aerocapture maneuver

lasts only about 4 minutes during which time active control of the vehicle

exit conditions (apogee and orbit plane) is accomplished by controlled

_ointing of the aerodynamic lift vector. After exiting the atmosphere the

vehicle is reconfigured for orbital operations. Upon reaching the apoapsis of

its park orbit some 12 hrs after aerocapture, a perigee raise burn is executed

which injects the vehicle into its operational Martian park orbit of 250 x

18108 nmi. This burn has a nominal value of 80 fps.

4.2 Mars Landing

The Mars landing phase is initiated when the Mars excursion module (MEM)

separates from the Lab/Hab Orbiter stack and performs an 81 fps deorbit

maneuver at the 18108 nmi. apogee point. This burn targets perigee at the

proper altitude within the Martian atmosphere to produce a nominal aeroentry

profile. During the orbital down-leg segment, astronavigation is conducted to

refine the expected entry state. A terminal correction burn is performed an

hour before entry. During the aerodynamic entry phase, lift is used to null

downrange and crossrange errors to the landing site. After the aerodynamic

phase is complete, descent rockets will be utilized to land on the surface of

the planet. Following a period of exploration, rocket propulsion is utilized

to boost the MEM Stage 2 back into Martian orbit for rendezvous with the

waiting Lab/Hab stack.

4.3 Earth Capture

An aerocapture maneuver is utilized at Earth return to place the Mars

vehicle in a closed Earth orbit. This maneuver maximizes the vehicle's

efficiency since the same aerobrake hardware used for Mars capture can be

reused for Earth capture. However, the issue of contamination of the Earth in

the case of a failed aeromaneuver must be addressed in future studies for

their impact on the overall practicality of this maneuver.



The sameencounter strategy used for Mars capture is employed, with
terminal astronavigation being utilized to correct the encounter trajectory.
An additional advantage for this encounter is the use of the Earth-based GPS
(Global Positioning System) signals in the final hours before entry to derive
an extremely accurate state vector. As before, a terminal correction burn is
conducted an hour before entry.

The Earth encounter hyperbola selected for the study has a
characteristic C3 of 68 km2/sec2 which represents a worst-case
opposition class mission. This high energy encounter is the major driver in
sizing the Mars/Earth capture brake as will be seen later. The
post-aerocapture orbit is an eccentric Earth synchronous type with an apogee
of 38484nmi. and a perigee of 245 r=ni. Injection into this orbit is
accomplished at first apogeeafter the aeropass via a 78 fps burn. Subsequent
to achieving this park orbit an earth-based OTVor a second aeropass (velocity
reduction of 8890 fps) can retrieve the Mars craft back to a low Earth orbit.
An alternate approach would be to retrieve only the crew and expedition
samples, thus leaving the Mars craft in ahigh energy Earth orbit in
preparation for another trip.

5.0 Entry Parametrics

Computer simulations of lifting entries were utilized to generate a data

base for all three mission phases: Mars capture, Mars landing, and Earth

capture. The mission profiles described in Section 4 were used to define

desired entry and exit conditions.

5.1 Mars Capture Parametrics

Various entry trajectories were generated utilizing a pre-entry hyperbola

with a C 3 of 31 km2/sec 2 and a Mars capture apogee of 18108 nmi.

(post-aero). Aerodynamic L/D and ballistic coefficient were varied for

continuous lift up and lift down trajectories to generate the parametric data

base. This data is displayed in Figures 5.1-1 and 5.1-2. Because of natural

sensitivities the data on pre-entry perigee altitude and peak deceleration

(Figure 5.1-1) is shown as a function of L/D while the peak heating and

integrated heating (Figure 5.1-2) is shown as a function of ballistic

coefficient.
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Figure 5.1-1 -

Mars Capture - L/D Parametrlcs

Figure 5.1-2 -

Mars Capture - Heating Parametrics

The difference between the pre-entry vacuum perigees for lift up and lift

down aerotraJectories defines a control corridor width which represents the

region in which the vehicle can be controlled to the desired exit conditions

with the available lift (Figure 5.1-1). Once error analysis (Section 6)

defines the magnitude of this control corridor, the vehicle's required L/D is
set. From a width of 0.0 nmi. for a no lift condition the control corridor

grows to a width of 16.0 nml. at an L/D of 0.30.

Peak entry deceleration is shown in g's for lift up and lift down

trajectories. The highest values of deceleration are always encountered in

the continuous llft up case which is thus used as a worst case loading

condition for structural sizing.

Peak stagnation heating shown in Figure 5.1-2 determines which TPS

materials are acceptable for the aerobrake. The lift up condition shown

generates maximal peak heating values. Integrated stagnation heating is shown

for the llft down maximal condition. This parameter determines the required

thickness of the aerobrake's insulating TPS.
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Time histories of key parameters for the lift up and lift down Mars

capture entries are shown in Appendix A and B.

5.2 Mars Landing Parametrics

A diagram of the landing entry process is shown in Figure 5.2-1.

Trajectories were generated which had the proper pre-entry apogee as well as

post-entry landing location (_landing) for continous lift up and llft down
entries. By varying ballistic coefficient and L/D a parametric data base was

generated as shown in Figures 5.2-2 and 5.2-3. Orbital apogee at entry

interface is 18108 nmi. and the landing point location is 8 ° downrange of

the pre-entry perigee location. This downrange parameter, B landing_ was
sized to give load relief to the vehicle during entry while also avoiding

skipout limits.

LIFT DOWN
TRAJECTORY

.......... VACUUM
ORBITS

LIFT UP
TR/_ECTORY

Figure 5.2-1 - Mars Landing Overview

Figure 5.2-2 shows pre-entry vacuum perigee and peak entry deceleration as

a function of L/D. As is shown in Figure 5.2-1, an entry control corridor can

be defined from the perigee differences of the lift up and lift down
extremums. This control corridor width reaches a value of 12.1 nmi. for a

0.15 L/D. The peak deceleration levels are much lower than those associated

with Mars capture.
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Mars Landing - L/D Parametrlcs

Figure 5.2-3 -

Mars Landing - Heating Parametrics

Figure 5.2-3 shows the peak stagnation and integrated heating encountered

in the limiting lift up and llft down landing profiles. It is apparent that

the thermal loads are also much smaller _han those associated with Mars

capture.

Time histories of key trajectory parameters are shown in Appendix C and D

for the llft up and llft down Mars landing profiles.

5.3 Earth Capture Parametrics

Lift up and lift down extremum trajectory data is shown in Figures 5.3-1

and 5.3-2 for the Earth return aerocapture phase. The nominal hyperbolic

encounter condition of C3 = 68 km2/Sec 2 is shown along with a more

benign profile whose C3 Is 32 km2/Sec 2. The post-nero apogee of 38484

nmi. is used as the target condition for both encounter conditions. Velocity

reduction in the aeropass is 10370 fps for the C3 - 68 encounter and 5880

fps for the C3 - 32 orbit.

Control corridor widths are much wider for the higher C3 at a given L/D

(Figure 5.3-1). The larger velocity reduction results in a larger llft

component which can be used for greater maneuverability. However, the faster

entry condition results in much higher peak deceleration loads.



The heating information shown in Figure 5.3-2 is for the 68 km2/sec 2

condition only and follows the same format shown in the previous sections.

Time histories of key parameters for lift up and lift down Earth captures

are shown in Appendix E and F.

EARTH CAPTURE CONTROL
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Figure 5.3-1 -

Earth Capture - L/D Parametrics

Figure 5.3-2 -

Earth Capture - Heating Parametrics

6.0 Error Analysis

The total magnitude of all errors affecting an aeroentry trajectory

determines the amount of aerodynamic control required. Following the strategy

developed in OTV Phase A studies (References 4, 5, 6), targeting errors are

combined with aerodynamic variations to establish a control corridor width

(Figure 6.0-1). This control corridor is bounded by lift up and lift down
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Figure 6.0-1 - Aerodynamic Control Corridor

limiting trajectories and thus describes the entry volume within which the

vehicle is controllable. The control corridor size derived by t_his error

analysis sets the vehicle's aerodynamic L/D requirements.

6.1 Interplanetar_ Navl_atlon

Navigation accuracy is one of the primary drivers of aeroentry

uncertainty. Operations remote from the Earth must rely on long-range radio

tracking and celestial navigation for r_his function.

Very long base interferometry (VLBI) Joins electrically the capabilities

of a number of widely separated Earth tracking stations to achieve high state

vector accuracies. The technique has been used in the Voyager project and

will be used on Galileo. Position accuracies of 5 umi. per A.U. separation

from Earth should be achievable in the near future.

Once a spacecraft can optically detect a target planet, terminal

navigation using onboard sensors can very accurately locate its position. Two

techniques have been investigated. The first uses an onboard video camera

(assumed to be part of the science payload) which photographs the planet as

the encounter proceeds. This technique has been widely used in planetary

missions (Mariner, Viking, Voyager) and yields about 1.0 nmi. position

accuracy per i0,000 nml. separation from the planet. Ultimately, an hour

before entry, this technique can result in a 1.5 nmi. position accuracy for

the baseline Mars encounter condition. For an aeroassisted mission this

navigation process would have to be automated on-board to eliminate the delays

associated wlth Earth-based processing.

The second technique is based on an autonomous stellar sextant package and

has higher accuracies because of a wider effective field of view. The system

uses two independently gimballed tracking telescopes linked to an onboard

computer which contains stellar and planetary ephemeris data along with

i0



atmospheric correction factors. Near-contlnuous navigation fixes are possible

because the system can operate independently of the host vehicle's attitude.

Based on data from the ANARS Space Sextant Program one could expect state

vector accuracies on the order of 0.5 nml. and 0.I fps at the entry minus one

hour point of Mars encounter.

In the entry error analysis a middle ground approach was chosen and the

accuracies associated with the video navigation technique used (1.5 nml. error

at final correction an hour before entry).

6.2 Mars Capture Error Anal_sls

Table 6.2-1 summarizes the error analysis conducted to derive Mars capture

control requirements. All errors are normalized into equivalent variations in

perigee altitude which Is the strongest driver to aeroentry uncertainty. The

variables are catagorized Into targeting errors and aerodynamic uncertainties.

The targeting errors result from inaccuracies in the execution of the

final correction burn one hour before entry and include allocations for

pointing error, cutoff error and navigation error. The pointing error of

0.I ° results from stellar update allxnment errors and subsequent IMU drift

which corrupts the desired pointing of the final correction. The velocity

cutoff error of 0.33 fps results from onboard accelerometer errors and Is a

working figure derived from the OTV conflguratlon. The navigation error is

representative of video navigation capabilities as discussed in Section 6.1.

These independent error contributions are RSS'ed together to yield a net

perigee variation due to targeting errors of +1.52 nml.

Table 6.2-1 - Mars Capture Error Analysis

EQUIVALENT
PERIGEE ERROR

• TARGETING ERRORS
(FINAL CORRECTION BURN AT ENTRY MINUS 1 HR)

- POINTING ERROR ,, 130 FT ::1:.1DEG
- CUTOFF ERROR ,, 1200 FT .33 FPS ACCELEROMETER
. NAV ERROR ,, 9100 FT FROM 1.5 NM POSITION UNCERTAINTY

750 FT FROM 0.2 FPS VELOCITY UNCERTAINTY

* AERODYNAMIC VARIATION

ATMOSPHERIC UNCERTAINTY = 18800 FT
- L/D UNCERTAINTY = 10900 FT
• BALLISTIC UNCERTAINTY =,1600 FT

± 50% DENSITY
± 2* AT 13° ANGLE OF ATTACK (± 30=/, L/D)
WT ,, ± 150 LB (RESIDUALS) -]
CD - ± 5% (ST,.%'VIKINGDATA) p ± 8=/=
A .±S% _j W___A

• RSS
. ±2,aooFr. ±3.s9N, FRO,AERODYNA,,CS

/. ±2a7oon. ±3.9N. VAR,ATIONI
I. ,I

I CONCLUSION: 10.3 N.M. CONTROL CORRIDOR REQUIRED TO COVER ERRORS WITH 33% MARGIN
i
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The aerodynamic errors result from variations in the Mars atmospheric

density as well as in vehicle aerodynamic properties during the entry phase•

A Martian atmospheric variation of + 50% in density is assumed (as compared

with + 30% for Earth applications) which is derived from the cool versus warm

denslt"ymodels contained in the Mars reference atmosphere. The L/D

uncertainty results from a vehicle trim attitude variability of +2 ° in the

continuum flow reglon of entry. The size of the variation is that derived for

the 0TV, when the Mars vehicle becomes better defined a similar derivation

will be possible for its specific configuration. Finally, a ballistic

uncertainty of +8% is carried which also represents a quantity derived from

the OTV. The RSS of the aerodynamic variations is +3.59 nml. in nominal
m

perigee altitude.

When the targeting and aerodynamic errors are combined a net perigee

variation of +3.89 nmi. results. This variation in the aeroentry trajectory

must be covered by the control capability of the vehicle in order to

successfully accomplish the aeroassist. From experience with the OTV

aeroentry process a 33% margin is added to the net variation to account for

control lags. This results in a net control corridor requirement of 10.2 nmi.

which then sets the L/D of the Mars entry vehicle at 0.2 using the parametric

data contained in Figure 5.1-1.

6.3 Mars Landing Error Anal[sis

The Mars landing error analysis is summarized in Table 6.3-1. The same

entry strategy is followed as in the Mars capture case with a final trajectory

correction being performed an hour before entry. The same basic navigational

capabilities are assumed even though the lander can benefit from several

tracking revolutions in Martian orbit to produce a refined pre-deployment

state vector. The same aerodynamic variations are used with their impact on

perigee altitude changed because of the different aeroentry profile.

Table 6.3-1 - Mars Landing Error Analysis

EQUIVALENT
PERIGEE ERROR

•TARGETING ERRORS
(FINAL CORRECTION BURN AT ENTRY MINUS 1 HR)

POINTING ERROR • 130 FT ± .1 DEG
CUTOFF ERROR = 1200 FT 33 FPS ACCELEROMETER
NAV ERROR ,,, 9100 FT FROM 15 NM POSITION UNCERTAINTY

750 FT FROM 02 FPS VELOCITY UNCERTAINTY

• AERODYNAMIC VARIATION

ATMOSPHERIC UNCERTAINTY - 14400 FT
• L/D UNCERTAINTY ,, 15800 FT
- BALLISTIC UNCERTAINTY ,, 3500 FT

+ 5o% DENSITY
+ 2" AT 9" ANGLE OF AI"FACK_± 30% IJD)

W T. ± 150 LB (RESIDUALS) | :1:8%
CD ,, :1:5% (STS/VIKING DATA)
^ .:±5% il W,%A

• RSS - ±9210 FT = ± 1.52 NM FROM TARGETING
. ±2,700_r. ±3.57NMFROMAERODYNAM,CS

I " :I:23500 FT ,,,:I:3.87 NM NET VARIATION ]

I CONCLUSION: 5.22 N.M. CONTROL CORRIDOR REQUIRED TO COVER ERRORS WITH 33% MARGIN
I
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The net variation In pre-entry vacuum perigee that results is +3.92 nml.

which becomes +5.22 nmi. with the addition of a 33% margin. Based on the

parametric da_ contained in Figure 5.2-2 an L/D of 0.133 is required of the

Mars lander• This amount of control is adequate to steer c_he lander to the

required landing spot, 8 ° downrange of the entry orbital apsides, in the

face of the defined dispersion set.

6.4 Earth Capture Error Analysis

This error analysis is summarized in Table 6.4-1. The principle

difference between this analysis and that conducted for the Mars capture

condition are as follows. Long-range GPS navigation accuracies reflect the

Table 6.4-1 - Earth Capture Error Analysis

EQUIVALENT
PERIGEE ERROR

• TARGETING ERRORS
(FINAL CORRECTION BURN AT ENTRY MINUS 1 HR)

. POINTING ERROR = 1095 FT ± .1 DEG
• CUTOFF ERROR ,, 2217 FT .33 FPS ACCELEROMETER
• NAV ERROR - 899 FT FROM 1020 FT POSITION UNCERTAINTY

1342 F't" FROM 0.1 FPS VELOCITY UNCERTAINTY

• AERODYNAMIC VARIATION

" ATMOSPHERIC UNCERTAINTY - 5100 FT
" I.K) UNCERTAINTY = 7300 FT
" BALLISTIC UNCERTAINTY - 2000 FT

:1:30% DENSITY

+ 2 a AT 9 ° ANGLE OF ATTACI_::t: 30% L/D)
WT , ± 1=50LB (RESIDUALS)

CD = + 5 '/, (STS/VIKING DATA_- + 8%A -+ 5% W/CDA

• RSS = :I:3000 FT . :I:0.49 NM FROM TARGETING
- :I:10300 FT = :l:1.69 NM FROM AERODYNAMICS

[= + 10700 FT,, :1:1.76NM NET VARIATION ]

[ CONCLUSION: 4.68 N.M. CONTROL CORRIDOR REQUIRED TO COVER ERRORS WITH 33% MARGIN
I

acquisition of the Earth-based NAVSAT constellation in the final day before

entry and are of a higher quality than those resulting from stellar slEhtlngs

alone. The atmospheric density variations are +30% (as opposed to the Martian

+50%) because of the Earth's better data base and ground based sensing

capabilities. The combination of errors yields a net +1.76 nml. variation
m

which expands to a +2.34 nml. control corridor requirement with the addition

of a 33_ margin factor. Using the parametric data in Figure 5.3-1 this sets

an Earth capture L/D of 0.15 for the nominal C 3 of 68. For the lower C 3

of 32 an L/D of 0•23 would be required.
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7.0 Aerobrake Materials and Structural Analyses

Having set the llft characteristics of the two aerobrakes, the TPS and

structural characteristics may then be determined. Brake sizing is based on

projected 1990's TPS heat flux limits for rigid surface insulations (RSI) and

flex surface insulations (FSI) as well as the prevention of direct flow

impingement to the afterbody of the vehicle. Complete details of the

computational procedure and data base used are given in References 4 & 5.

Nonequillbrlum radiative emission rates are based on earth reentry predictions

and are used in determining heating environments for all three aeromaneuvers.

Stagnatlon point convective heating rates are based on a modified Fay-Riddell

method. Real gas effects on aeroshell heating and dissociation impacts on
aerocharacterlstlcs are not included.

7.1 Mars and Earth Capture Brake

The use of a common aerobrake to perform Mars and Earth capture saves on

weight by eliminating hardware duplication. The design drivers for sizing are

picked from the most stressful of the two flight phases. The Mars capture

phase sets afterbody impingement criteria while the Earth capture sets thermal

and loadlng criteria.

To prevent afterbody flow impingement in the Mars capture phase a 104 foot

diameter, 70 ° conical brake would be required. Use of this same brake size

for Earth aerocapture would limit the ballistic coefficient to i0.0, due to

the 50 BTU/ft2-sec heat flux limlt of rigid surface insulation (RSI). To

achieve this ballistic coefficient the Earth return vehicle's weight would

have to be reduced to 133000 lb. by Jettisoning some of the vehlcle modules

Just prior to Earth entry. In addition, edge heating exceeds FSI capabilities
and the entire brake would have to be made of the heavier RSI.

A resizing process was performed to allow the return to Earth of the

complete Mars vehicle, weighing 163,000 lb. This includes the Lab/Hab

modules, the HEM 2nd stage, and the Mars escape stage (Including 7,000 lb. of

propellant). The brake was sized to allow FSI to be used on the periphery of

the brake to save weight. The center of the brake uses RSI and was

constrained to a diameter of 25 feet to allow intact delivery to LEO using the

shuttle aft cargo carrier. Results of the analysis showed that a 142 foot

diameter brake was required for the demanding Earth aerocapture phase.

The thermal design quantities are peak stagnation point heating of 40.3

BTU/ft 2 sec and integrated heating of 3254 BTU/ft 2 achieved in Earth

capture. These levels require a 0.69 inch layer of RSI for the hard shell

nose cap. The RSI/FSI interface location sees maximum heating values of 35.0

BTU/ft2-sec (peak) and 2908 BTU/ft 2 (integrated) which sets the FSI

blanket thickness at 0.40 inches. These heating values are normalized to the

capture brake's nose radius of 35.5 ft.

14
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Figure 7.1-1 - Mars/Earth Capture Brake Overview

The support structure requirements are set by the peak g-loadlng of the

strenuous Earth capture. Utilizing the space based OTV aerobrake as a

baseline, structural scaling factors were derived which accounted for size and

loads. The results of this analysis show a net structural weight (excluding

TP$) for the Mars/Earth capture brake of 11032 Ibs. The center core section

contains doors through which the Mars escape stage engine bells protrude

during non-aerobraked portions of flight. An overview layout of the brake's

construction is shown in Figure 7.1-1. Other characteristics of the brake are

summarized in Table 7.1-1.
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Table 7.1-1 - Aerobrake Data

VB-ICLEWeGHT

L/D

.aNGI.ECFATTACK

,ag:I:B:_/_E I:I_AETER

BAt.LIS'nc_

PEaKLD_ONG

NLJkeB:_OFRBS

_TOTAL WEIE_-fI'(_

FI_ V_GHT
F_WBC._T

_WEiGHT

MARSCACm.JRE

465300 IR

0.2

12:42DEG

142FT

19.3

4.9 g'$

38

23371 us (-)

401 LB
8890 LB

11032 LB

M/_Sbq_NG

1575OOLB

0.133

828 DEG

361=1"

100 US/FT2

2.5 g's

12

13_ us (9

o
786 I.B

424 us

("NOTE:I_B::[)B:_eKETOTAL_ _ A15%_

EARn-I_

163OOOLB

0.15

9.33DEG

142FT

6,6 [.B/FT2

8.3 g's

38

2_71 us (-)

4Ol us
889o us

11032 LIB

It should be noted that thls brake is severely driven by the Earth

encounter C 3 of 68 km2/sec 2. The more benign encounter condition of

C 3 = 32 km2/sec 2 will result in an overall brake weight reduction of at

least 30%.

7.2 Mars Landin G Aerobrake

The thermal and structural analysis of the Mars landing aerobrake was

conducted in the same manner as described in the previous section. Because

the thermal and deceleration loads are smaller the brake can be much lighter.

Afterbody impingement considerations for the MEM set a minimum brake

diameter at 36 ft. At this size and based on an entry weight of 157,500 ib a

ballistic coefficient of 100.0 results. When the parametric heating data is

normalized to a nose radius of 9 ft, a peak stagnation heating of 17.4

BTU/ft 2 sec and an integrated heating of 2864 BTU/ft 2 results. At these

heatlnE levels an all-FKI fabric brake is possible whose TPS thickness Is 0.65

inches.
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Structural analysis shows that 12 ribs are adequate to support the high

temperature ceramic fabric, with a total support structure weight of 424 lb.

Because the brake will be Jettisoned prior to the ignition of the terminal

descent rockets, no engine doors are required. The characteristics of thls

brake are also summarized in Table 7.1-1.

8.0 Conclusions

The concept of a low L/D, ceramic fabric aerobrake developed in the 0TV

Phase A has been applied to a manned Mars mission. The resulting vehicle

configuration Is shown In Figure 8.0-1. The large Mars/Earth capture brake,

which is permanently deployed, is shown on the left. The Mars excursion module

is shown on the right in its trans-Mars configuration. The HEM's all-fabric

brake is folded up in transit to prevent aerodynamic impingement during Mars

aerocapture. Once in Mars orbit this brake is deployed in preparation for

landing. Upon return to the Earth the entire remaining stack, consisting of

the Mars escape stage, Lab/Hab modules, and the HEM stage 2 is aerocaptured by

reusing the large brake.

Potential subjects for a follow-on to this effort would be: I) a look at a

reduced Earth entry velocity to allow a lighter capture brake, 2) better

characterization of the Mars entry landing profile (including terminal landing

constraints), 3) more detailed structural analysis of the large capture brake,

and 4) techniques for reducing g-loads in the C3-68 Earth capture.

MARS LANDER

(ENTRY CONFIG.)

MARSLANDF.R
AEROBRAKE

J (DEPLOYED)

MARS / EARTH

CAPTURE

AEROBRAKE

MARS ESCAPE STAGE

\

HAB AREA 1 14'

!

1 HAB AREA 2

MISSION

MODULE

MARS VEHICLE - TRANS MARS CONFIGURATION

Figure 8.0-i - Aerobrake Vehicle Configuration
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